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Abstract

The ecdysone receptor (EcR) is a member of the large family of nuclear hormone receptors, which are ligand regulated
transcription factors. In general, ligand converts these receptors into a transcriptional activator. Some vertebrate nuclear

hormone receptors, such as the thyroid hormone and retinoic acid receptors, silence gene expression in the absence of ligand.
EcR is involved in ¯y metarmorphosis and is used in vertebrates as an inducible system for expression of transgenes. Here, we
show that a Drosophila receptor, the EcR, harbours an autonomous silencing function in its carboxy-terminus. Interestingly,
EcR mediates also silencing in vertebrate cells. In concordance with this EcR interacts with the corepressors SMRT and N-CoR,

while addition of ligand reduces this interaction. Conversely, the v-erbA oncogene product, a thyroid hormone receptor
derivative, mediates silencing in Drosophila cells. Thus, our data suggest the involvement of an evolutionarily conserved
mechanism by which nuclear hormone receptors mediate gene silencing in multicellular organisms. # 1999 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

Nuclear hormone receptors, including the ecdysone
receptor (EcR), represent a superfamily of transcrip-
tion factors. They are involved in the regulation of
various cellular processes such as development, di�er-
entiation, homoeostasis and metamorphosis [1±4].
Members of this superfamily are evolutionarily con-
served and are found in vertebrates, ¯ies, sea urchin,
Schistosoma and hydra [5,6]. They have a highly con-
served DNA binding domain (C-region) consisting of
two Zn-®ngers, a variable amino-terminus (A/B-

region) and a conserved carboxy-(C) terminus (regions
D±F). The latter harbours multiple functions including
hormone binding, transactivation, dimerization, and
nuclear localization [1±3].

The EcR regulates the morphogenic events in the
Drosophila puparia formation and metamorphosis
through the steroid hormone 20-hydroxy-ecdysone [7].
Thereby, the EcR is heterodimerized with Ultraspiracle
(USP) which enhances the DNA binding, hormone
binding and transactivation by EcR [8,9]. Interestingly,
there are di�erent isoforms of the EcR which are
expressed in a tissue- and developmentally speci®c
manner [10]. These isoforms have a common DNA-
and hormone-binding domain but di�erent N-termini.
Sequence comparisons with nuclear hormone receptors
show that the EcR has an unusual large extension of
the F-region.

The EcR is used in vertebrate cells and for trans-
genic mice as an hormone-inducible system [11,12].
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Thereby, fusion proteins are used with the C-terminus
of the EcR which allow the transfected genes to be
under control of the ecdysteroid Muristerone A. Using
an inducible gene expression system studies can be per-
formed to analyze developmental or metabolic pro-
cesses. For that purpose it would be important to
know how EcR is regulating gene expression in ver-
tebrate cells, which cellular factors are required and
whether cell speci®c factors are involved in EcR
mediated gene regulation.

A few members of the nuclear receptor family, such
as TR (c-erbA) and RAR, contain an additional func-
tion to mediate active gene silencing in their C-termini
[13]. So far, a C-terminal silencing domain has been
identi®ed only for vertebrate receptors.

Gene silencing is achieved by a receptor±corepressor
complex [14±17]. In analogy to that, gene activation is
achieved by a complex of liganded receptor and coacti-
vators [16,18,19]. Thus, the role of hormone is to
switch these receptors from a transcriptional silencer
to an activator.

Here we show that the EcR harbours an auton-
omous silencing function in the C-terminus. This silen-
cing domain is functional in both Drosophila and
vertebrate cells. This is important for both tight con-
trol of gene expression and reduced background of
promoter activity. Furthermore, we provide evidence
that EcR interacts with the corepressors SMRT and
N-CoR. Conversely, the V-ErbA oncoprotein mediates
silencing in Drosophila cells. Our data also show that
Drosophila nuclear hormone receptors have a transfer-
able silencing domain and indicate the involvement of
conserved mechanisms of gene silencing by nuclear
hormone receptors.

2. Materials and methods

2.1. Plasmids

The plasmids pVP-SMRT [14]; pJG-N-CoR [15];
pEG202; pJG4±5, pSH18±34 [20], pABgal-v-erbA [13]
and pABgal94-linker [21] have been described earlier.
pABgal94-EcR 330±878 was generated by insertion of
the ®lled-in-Eco52I-HindIII fragment (partial diges-
tion) into the blunted AccI and HindIII sites of
pABgal94-linker. The plasmid pAB-EcR 330±817-
gal94 was created by insertion the EcR coding
sequences from aa 330 (Eco25I) to aa 817 (NheI) 5Â to
the coding sequence of Gal4-DBD and 3Â of the ATG
(BglII-site) of pABgal94-linker. pEG-EcR 330±878 was
constructed by insertion of the HindIII-Klenow/EcoRI
fragment from pABgal94-EcR 330±878 into the XhoI-
Klenow/EcoRI site of pEG202. The yeast two-hybrid
assay was performed with the EGY strain (MATa his3

trp1 ura3±52 leu2: pLEU2-LexAop6) as described pre-
viously [22].

Constructs for in vitro translation were cloned as
follows: EcR aa330±878 was excised from pABgal94-
EcR 330±878 with blunted EcoRI-HincII, and ligated
to the [23] HincII site. pT7-EcR aa330±878 was in
vitro translated using the Promega TNT kit with 35S-
methionine and T7 polymerase according to manufac-
turers protocol.

2.2. GST-pull-down

GST-pull-down experiments were performed as
described earlier [24]. Preparation of E. coli expressed
GST-SMRT was according to [14] and Baniahmad et
al. [22]. Interaction assays using hormone were done
as follows: four microliters of in vitro-translated recep-
tor were incubated with 10ÿ4 M Muristerone A
(Sigma) dissolved in interaction bu�er for 30 min in a
total volume of 60 ml and then added to the beads.
Binding was allowed to proceed for 30 min and the
beads were subsequently washed 5 times with
NETN+0.5% nonfat dry milk. The bound proteins
were eluted by boiling in 10 ml of sodium dodecyl sul-
fate (2�SDS)-polyacrylamide gel electrophoresis
(PAGE) loading bu�er and resolved by electrophor-
esis. The indicated input lane shows 10% of the added
in vitro-translated material to each pull-down for im-
mobilized GST or GST-SMRT. The GST fusion pro-
teins were stained with Coomassie blue to ensure that
equal amounts of fusion protein were used in this
assay. The bound, labelled protein was visualized by
autoradiography.

2.3. Yeast 2 hybrid assay

The yeast two-hybrid assay was performed accord-
ing [20] and as described earlier [22].

2.4. Cell culture

Drosophila Schneider S2/L3 cells were grown in
Schneiders' medium (Gibco/BRL) with 10% FBS
(insect quali®ed, Gibco/BRL) and 1% glutamine at
258C. Cotransfections were carried out by the CaPO4

method [25] at room temperature. In general, a total
of 4 to 7.5 mg of expression vector and 1 mg of the
2xUAS-Adh86-CAT reporter plasmid were added to
5� 105 cells in 5 ml of medium. In studies involving
hormone, Muristerone A, dissolved in ethanol, was
added to 1 mM ®nal concentration 24 h after DNA-
transfection. The cells were cultured for an additional
24 h at 258C before harvest. In experiments without
hormone ethanol was added. DNA-transfection of
Ltk- and CV1 cells were performed in hormone-
depleted serum as described earlier [22]. The cotrans-
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fected vector RSV-lacZ (3 mg), as internal control,
yielded similar expression levels (in the range of about
15% variation) independent of the transcriptional
e�ects of the Gal-fusions. The level of CAT-expression
were in the range of 5%±15% CAT-conversion.

3. Results

3.1. The Drosophila EcR harbours a transferable
silencing domain in its C-terminus, which is functional in
both Drosophila and vertebrate cells

Based on the sequence homologies of EcR with TR
[26] we characterized the C-terminal domain of the

EcR, by replacing ®rst the EcR DNA-binding domain

(DBD) with that of Gal4 (amino acids 1±94).

Hormone inducible gene expression was tested by

cotransfection of the expression vector together with a

UAS (Gal4-DBD binding site) containing reporter in

Drosophila Schneider S2-cells. Fold induction was cal-

culated by dividing the values obtained in the presence

with those obtained in the absence of hormone. As

seen in Fig. 1, amino acids 330 to the C-terminal end

(aa 878) of the EcR are su�cient to mediate hormonal

response. Similarly, fusion of the Gal-DBD to the F-

region of the EcR also yielded a functional ecdysone

responsive protein Fig. 1. This suggests that at least

part of the F-region is not required for hormonal re-

sponse and shows that the EcR-C-terminus represents

a functional and transferable domain.

Interestingly, in the absence of ligand, the EcR med-

Fig. 1. The C-terminus of the ecdysone receptor (EcR) mediates hor-

monal response in Drosophila cells. Drosophila Schneider S2/L3 cells

were cotransfected with the indicated expression plasmids for Gal4-

DBD (aa 1±94) alone, Gal-EcR-(330±878) or EcR-(330±817)-Gal

and with the reporter pUAS2x-Adh-CAT (1 mg). The ligand,

Muristerone A (10ÿ5 M), was added and incubated for 24 h. Fold in-

duction was calculated by division of the values obtained in the pre-

sence of hormone with the values obtained in the absence of ligand.

Fig. 2. The C-terminus of the EcR mediates silencing in the absence

of hormone in Drosophila cells. Cotransfection experiments were

done as in Fig. 1 with the reporter pUAS2x-Adh86-CAT and the

indicated expression plasmids. Muristerone A was added at a con-

centration of 10ÿ5 M. Values are normalized to that obtained with

Gal4-DBD alone. Gal-v-ErbA is a fusion of the C-terminus of the v-

erbA oncogene to the Gal4-DBD.
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iates repression of promoter activity in Drosophila
cells. As seen in Fig. 2, the EcR-Gal fusion protein
silenced promoter activity, while addition of hormone
leads to promoter activation. This shows that in ad-
dition to ligand binding and transactivation the C-ter-
minus of EcR also harbours a silencing function. The
Gal-DBD aa 1±94 itself did not show any signi®cant
transcriptional activity in Schneider cells (not shown).
Thus, EcR functions in a similar manner to the ver-
tebrate receptors TR and RAR. Therefore, we won-
dered whether a vertebrate nuclear receptor with a
silencing function would also be able to mediate
repression in Drosophila cells. For this purpose we
used the thyroid hormone receptor derivative, v-ErbA.
Compared to TR (c-erbA), the v-erbA oncogene pro-
duct di�ers by several amino acids and lacks the very
C-terminal domain AF2-AD/t4/tc [2±4,27±29] which
is essential for hormone-dependent transactivation.
This renders v-ErbA to a constitutive silencer. Indeed,
expression of Gal-v-ErbA, a fusion of the silencing
domain of v-ErbA to the Gal4-DBD [13] in Drosophila
cells, results in promoter repression, to a similar extent
as EcR-Gal Fig. 2.

Since a vertebrate nuclear receptor mediates silen-

cing in Drosophila cells we examined whether
Drosophila EcR was capable of silencing in vertebrate
cells. We cotransfected the expression plasmid EcR-
Gal and the UAS containing reporter 17mer6x-tkCAT
[13] into two cell lines, monkey CV1- and mouse Ltk-
cells. As seen in Fig. 3, EcR mediates the repression of
promoter activity in both cell types. Thus, the C-termi-
nus of EcR is also able to silence gene expression in
vertebrate cells.

Taken together, in addition to the hormone-depen-
dent transactivation domain, the Drosophila EcR has a
transferable silencing domain in its C-terminus, which
is functional in both Drosophila and vertebrate cells.
Conversely, the vertebrate nuclear receptor v-ErbA is
able to mediate silencing in Drosophila cells. This indi-
cates that the mechanism of gene repression by nuclear
hormone receptors is conserved between Drosophila
and vertebrates.

3.2. EcR interacts with the corepressors SMRT and N-
CoR

Since the silencing by nuclear hormone receptors in
vertebrate cells is mediated by a receptor±corepressor
complex, we analyzed whether EcR is interacting with
the two known vertebrate corepressors SMRT and N-
CoR [14,15]. We used the yeast-2-hybrid assay accord-
ing to Gyuris et al. [20], as an established method for
protein±protein interaction. As bait we fused the EcR

Fig. 3. The EcR mediates transcriptional silencing in vertebrate cells.

Cotransfection experiments as described in Fig. 1 were performed

with mammalian CV1 or Ltk-cells. The plasmid 17mer6x-tkCAT was

used as a reporter. Values obtained with Gal4-DBD were set as one.

RSV-lacZ was used as internal control.

Fig. 4. The EcR interacts with the corepressors SMRT and N-CoR.

Yeast 2-hybrid experiments were performed using the C-terminus of

EcR (aa330-878) as a bait and SMRT or N-CoR as the activator

fusion according to Gyuris et al. [20]. Speci®c interaction is seen

with EcR and both corepressors. Controls represent the empty ex-

pression vectors.
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C-terminus to the DBD of LexA and cotransformed
yeast cells with a LacZ containing reporter and either
the reported activator fusions SMRT [14,22] or N-
CoR [15]. Interaction is determined by expression of
the lacZ reporter. As seen in Fig. 4 both SMRT and
N-CoR interact speci®cally with EcR. The combi-
nation of SMRT with EcR yielded a much higher lacZ
expression compared to N-CoR with EcR. This is of
special interest since no signi®cant homology to the
CoR-box of TR and RAR is found in EcR. We did
not observe a hormone-sensitive interaction using this
assay (data not shown). One possibility is that the pen-
etration of the yeast cell wall by Muristerone A or 20-
hydroxy-ecdysone is impaired or the ligands are
rapidly degraded. Controls used in the yeast 2-hybrid
assay are the empty expression vectors in each combi-
nation with either the bait or the activator fusion, as
indicated in Fig. 4.

To verify the interaction and to analyze the e�ect of
EcR ligand we used the GST-pull down system.
Bacterially expressed GST or GST-SMRT were im-
mobilized on glutathione beads and were incubated
with in vitro translated, 35S-labeled EcR (aa 330±878).
The in vitro translation of EcR C-terminus gave rise
to two bands, as seen in Fig. 5. We found strong bind-
ing of EcR to the corepressor SMRT, while we did not
observe an interaction with GST alone. Addition of
Muristerone A led to a signi®cant and reproducible
decrease in interaction Fig. 5. Due to the fact that the
a�nity of EcR to its ligand is greatly impaired when
not heterodimerized with Ultraspiracle (USP) [30], we
see only a partial release of bound EcR from GST-
SMRT.

Thus, EcR interacts with the corepressors SMRT
and N-CoR. Furthermore, we show that addition of
the cognate hormone leads to a decrease in corepres-
sor±EcR interaction.

4. Discussion

We have identi®ed for the ®rst time a transferable
silencing domain required for an active repression

mechanism in a Drosophila nuclear hormone receptor.
Interestingly, the EcR silencing domain is functional in
vertebrate cells as well. By analogy, a vertebrate mem-
ber of the nuclear receptor superfamily is capable of
mediating silencing in Drosophila cells. Taking this
into account EcR has multiple similarities to the TR/
RAR family of nuclear hormone receptors: EcR is
localized in the cell nucleus in the absence of hormone
[26], heterodimerizes with USP [30,31], which is func-
tionally related to RXR [9,32], binds to both palindro-
mic and direct repeats [33,34] and harbours a silencing
function. Thus, although EcR binds steroids, it is less
related to the mammalian receptors for steroids.
Rather, EcR is functionally homologous to the non-
steroid-receptors, such as TR and RAR. It would be
of interest if there are further functional homologies
between EcR and TR/RAR. There are reports which
show that not only a hormone-dependent dissociation,
but also a DNA-binding-site-dependent association of
corepressors with RAR and TR is found [35,36]. Also,
there are negative T3REs and RAREs which exhibit
activation by unliganded TR or RAR [37±39], which
are reported to include corepressor association [40].
This observation may also be important for the
Ashburner model, by which ecdysone removal leads to
premature appearance of late pu�s in the polytene
chromosome of Drosophila [41,42].

Since the N-terminus of vertebrate nuclear hormone
receptors also contributes to the overall transcriptional
activity, it may be possible that the di�erent isoforms
of EcR have di�erent in¯uences on cofactor binding.

In Drosophila a corepressor has been characterized,
Groucho, which acts in concert with transcriptional
silencer proteins, such as Hairy and Engrailed [43].
Groucho is required for Drosophila neurogenesis, seg-
mentation, and sex determination [44]. So far there is
no known vertebrate homologue of Groucho.
Conversely, Drosophila homologues of the vertebrate
corepressors SMRT or N-CoR are not published.

EcR is used in mammalian cells as part of a hor-
mone-inducible gene expression system. For tight con-
trol of gene expression, a strongly reduced background
expression is desired. This is presumably possible since

Fig. 5. Hormone leads to a reduced binding of EcR to the corepressor SMRT. GST pull down experiments were performed using bacterially

expressed GST or GST-SMRT and in vitro translated, 35S labeled EcR C-terminus (aa 330±878). The radioactive labeled protein was incubated

with Muristerone A (10ÿ4 M) dissolved in ethanol or ethanol alone for 30 min before incubation with GST or GST-SMRT. The input lane

shows 10% of the labeled material used in the interaction assays.
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unliganded EcR represses target genes. For proper
hormone-inducible gene expression by nuclear hor-
mone receptors cofactors are required. Thus, the levels
of endogenous cofactors are important regulators
involved in this aspect. Tissues lacking a speci®c cofac-
tor are therefore likely to exhibit a di�erent level of
hormonal response of gene expression. A correlation
between corepressor level and hormone induction has
been shown for RAR [45], whereby low amounts of
endogenous corepressor result in a weak hormone re-
sponse. Such a cofactor dependency may limit these
inducible systems to a certain extent. However, since
cofactors seem to be present in a redundant manner,
the overall e�ect may be less dramatic.

In Drosophila development EcR is expressed in a
very early stage of the embryogenesis [26] and reaches
several peaks during the larvea, prepupa and pupae
stages. In situations where the intracellular concen-
trations of ecdysone are low, EcR may be complexed
with Drosophila corepressors, which would mean that
EcR responsive genes are silenced.

A repression function by natural ecdysone response
elements of endogenous Drosophila genes has been
shown [46,47], while gene activation depends on ad-
dition of ecdysone. In this manner EcRE functions as
both repressor and activator elements, which is in ac-
cordance with our ®ndings.

The fact that nuclear hormone receptors are able to
silence gene expression in both Drosophila and ver-
tebrate cells suggest an evolutionarily conserved mech-
anism. We postulate that in Drosophila either SMRT
or N-CoR homologues exist or as yet unpublished cor-
epressors are present, which complex with selected
members of nuclear hormone receptors and mediate
gene repression.
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